AD=A038 963

UNCLASSIFIED

WISCONSIN UNTV MADISO! MATHEMATICS RESEARCH CENTER F/6 9/2
SOFTWARE FOR INTERVAL ARITHMETIC: A REASONABLY PORTABLE PACKAGE==ETC (U)

MAR 77 J M YOHE DAAG29=75=C=0024
MRC=TSR~-1731 NL

~

MRC Technical Summary Report # 1731

SOFTWARE FOR INTERVAL ARITHMETIC:
A REASONABLY PORTABLE PACKAGE

J. M. Yohe

Mathematics Research Center
University of Wisconsin—Madison
610 Walnut Street

Madison, Wisconsin 53706

March 1977

(Received February 25, 1977)

\.

Approved for public release
Distribution unlimited

Cory

Sponsored by

—J U. S. Army Research Office
L P. 0. Box 12211
Research Triangle Park

é North Carolina 27709

c

UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RE! EAKRCH CENTER

SOFTWARE FOR INTERV..I ARITHMETIC:
A REASONABLY PORTAELE PACKAGE
J. M. YOHL
Technical Summary Report #1731
March, 1977
ABSTRACT

We discuss the design and capabilities of a package of FORTRAN
subroutines for performing interval arithmetic calculations. Apart
from a relatively small number of primitives and constants, the
package is directly transferrable to most large scale computers, and
has been successfully implemented on IBM, CDC, and Honeywell equip-
ment in addition to the UNIVAC 1110,

This package has been designed so as to be compatible with the
AUGMENT precompiler, and includes interval analogs of appropriate
standard FORTRAN operations and functions, as well as operations and
functions peculiar to interval arithmetic. The result is that the
user who has access to AUGMENT may write programs using interval

arithmetic just as though FORTRAN recognized INTERVAL as a standard

data type.

AMS (MOS) Subject Classification: 94-04

Key Words: Interval Arithmetic Program Package
Portable software

Work Unit No. 8 (Computer Science)

Sponsored by the United St-tes Army under Contract Number DAAG29-75-C-0024
and a grant from the Waterways Experiment Statiom, Vickshurg, Mississiop-.

SOFTWARE FOR INTERVAL ARITHMETIC:
A REASONABLY PORTABLE PACKAGE

J. M, YOHE

‘1. Introduction: ~ One means of bounding the error in digital computation

is through the use of interval, or range, arithmetic; instead of computing
with approximate real numbers, one calculates with pairs of approximate
real numbers -- the first member of a pair being a lower bound for the
true result, and the second an upper bound, By this method, one can take
into account such varied sdurces of error as uncertainty in input data,
inaccuracies in mathematical formulae, and errors in approximation of real
numbers and the operations on them, The theory of interval arithmetic is
develo:gd_gxten;ixglx elsewhere,[5]; we shall not treat it hcre,

e majcr obstacle to the use of intgrval arithmetic is the unavail-
ability of software, INTERVAL is not a standard data type in any produc-
tion language that we know of; preparation of a package of subprograms to
handle interval data is a nontrivial task.) Since the representation of and
operations on interval data are necessarileKthher heavily dependent upon
the architecture of the host computer, a package developed for one system
can not, in general, be moved intact to a different system,

This paper describes an interval arithmetic package for use with
FORTRAN, The power of the AUGMENT precompiler [2, 3] is employed to render
the major part of the package independent of specific data representations,
and the package is so designed that the parts which are representation-

dependent are concentrated in a relatively small number of modules, most

v

Ul
Sponsored by the United Statces Army under Contract Number DAAG29-75-C-0024 ;‘
and a grant from the Waterways Experiment Station, Vicksburg, Mississippi.

of which are easily adapted to new environments.

Although this package was written for the UNIVAC 1110, it has also
been implemented on IBM, DEC, Honeywell, and CDC equipment. No major
problems have been reported in transporting the package to these host
systems, ‘

The information given in this paper is not intended to be exhaustive.

The interested reader will find detailed information on all aspects of

the package in the technical manual (9].

2. Design of the package:

The viewpoint taken was that of the end user. We sought to make
the package complete, accurate, convenient to use, fail-safe, and
transportable.

Completeness: All appropriate ANSI Standard Fortran [l] operations

and functions were implemented, along with some (such as tangent, hyper-
bolic sine, and hyperbolic cosine) which are not ANSI Standard but are
normally implemented in the FORTRAN language anyhow, Since interval
numbers can be regarded in a natural sense as belonging to an extension of
the real number system, most arithmetic operations and special functions
are meaningful. In addition, there are a large number of functions peculiar
to interval arithmetic (such as union and intersection of intervals, mid-
point, and half-length) which were also included in the package, Finally,
input/output routines and conversions between intervals and standard data
types (where appropriate) were implemented. A list of the functions and
operations is given in Table 2.1.

Accuragy: It is well known that error is inherent in digital computa-
tions, and that most computer architectures are less than optimal from this
point of view. (Recently, there has been increased interest in developing
more hospitable architecture; see, for example, Lang and Shriver [4]
and Ris [6].) Moreover, it is extremely difficult, if not impossible, to
obtain the information required for rigorous bounding of hardware operations.
Since interval arithmetic tends to be pessimistic anyhow, we felt that the
calculation of bounds through straightforward application of a priori
estimates such as Wilkinson's [7] would lead to intolerable inaccuracy.

In addition, vital information concerning such phenomena as exponent range

faults is generally not available in existing systems. Consequently, the
package was designed to be based on a set of arithmetic primitives of the
type described in [8].

The special functions pose a different problem, A straightforward
application of interval arithmetic to the algorithms used to compute these
functions will yield unacceptably wide.intervals, due to the dependency
problem [5], We addressed this problem by employing higher precision
functions, bounding the results on the basis of accuracy information pro-
vided by the software supplier. This must be regarded as being less than
completely satisfactory, since available error information is often sketchy
and may not be completely rigorous; however, the bounding procedure takes
‘these disadvantages into account, and the results can be regarded as being
valid with extremely high probability.

Like the arithmetic routines, input/output routines need to be written
from the ground up. Conversion routines supplied with standard FORTRAN
systems have no provisions for obtaining the required bounds; moreover,
most of them are of unknown, if not dubious, accuracy.

Convenience: By itself, no collection of routines to perform non-
standard arithmetic is really convenient to use, Each operation must be
performed by a call on one of the subprograms in the package; this means
that the user must parse every expression himself and write his program in
what amounts to assembly language. The best that can be done in this
setting is to minimize the inconvenience. To this end, we have kept the
package as internally consistent as possible. All entry points to the
package bear the prefix INT; routines used by the package itself are pre-
fixed with INT or BPA, according to their level. Thus, by avoiding variable
and subprogram names beginning with these prefixes, the user may be assured

of avoiding conflicts,

i Calling sequences for the routines in the package are consistent and
concise, No information is transmitted which is not absolutely essential

to the function being performed. Where the result of a function or operation
is a standard data type, the routine is implemented as a function of that
type; otherwise, the routine is implemented as a subroutine. In the former
case, the arguments are simply the operands; in the latter case, the arguments
are the operands together with the result., (In the interest of flexibility,
the endpoints of an interval are regarded as being a nonstandard data type.)

Convenience of use of any nonstandard data type is increased dramatically
by the use of an appropriate precompiler. This package is specifically de-
signed to be used with the AUGMENT precompiler, which allows the source
FORTRAN code to be written as though FORTRAN recognized INTERVAL as a stan-
dard data type. In this case, just as above, the user must avoid conflicts
with the package; although the source code will not contain references to
the routines of the package, the output from AUGMENT, of course, will, In
addition, the user must also avoid the function names and operators shown
in the table, since these become reserved words in the extension of FORTRAN.
In most cases, this should not be an onerous task.

Fail-safe: Errors can occur in many of the operations of the interval
package, just as they can in REAL operations. It is our viewpoint that errors
should not be ignored. Each subprogram in which an error can occur will
call the error-handling routine, INTRAP, prior to returning control to the
calling program. If no error has occurred, INTRAP simply returns control
to the routine which called it, Otherwise, INTRAP takes the action specified
by a table which resides in a COMMON block; the response depends on the
error which has occurred, but usually includes a print-out which gives the

user complete information on the error., The user may, if he chooses, alter

-5

the response by changing the table.

Transportability: Transportability and flexibility of representation

are closely linked. The package is based on three data types: BPA (mnemonic
for Best Possible Answer), which is the data type of the endpoints of inter-
vals, but is otherwise undefined except in a few primitive routines; INTERVAL,
which is defined to be a BPA array of length 2; and EXTENDED, which is the
data type in which evaluations of special functions are performed. In the
UNIVAC version of the package, the representation of BPA is the same as

that of ﬁEAL, and EXTENDED is a synonym for DOUBLE PRECISION,

The AUGMENT precompiler is used to extend the representations of these
nonstandard data types throughout the package. The output of the AUGMENT
precompiler is a set of routines which, apart from the arithmetic primitives
which are written in assembly language, conforms as closely as possible to
ANSI Standard FORTRAN,

There are less than twenty program modules which depend on the
representations of BPA and EXTENDED numbers; many of these will need no
alteration for most applications. Adaptation of the package to other

hardware is aiscussod more fully in Section 4,

3. U'; of the INTERVAL package:

If used as a collection of subroutines, without the benefit of the
AUGMENT precompiler, the INTERVAL package is, of course, used just as
any package of subprograms would be used. That is, the user must decide
which routines must be invoked and in what order. We prefer to regard the
INTERVAL package as an extension of the capabilities of the host computer
system, and the AUGMENT precompiler as an instrument for extending FORTRAN
to take advantage of the additional power, Thus we will address the
question of use of the package in this context; the user who by reason of
preference or necessity does not use the precompiler will have no difficulty

in adapting this discussion to his needs.

Type declarations for INTERVAL variables: If X, Y, and Z represent

INTERVAL variables, they must be declared as such by the statement
INTERVAL X, Y, 2

INTERVAL variables may be dimensioned; the only restriction is that if the

FORTRAN compiler limits the number of dimensions of an array, that limit

must be decreased by 1 for INTERVAL variables, The reason for this is

that AUGMENT will declare INTERVAL variables as arrays,

Assignment of values to INTERVAL variables: Most real numbers can not

be represented exactly in the computer. The error inherent in a statement
such as

X=,1
may not be immediately obvious, If X is an INTERVAL variable, the above
statement will assign a value to X, but that value will not, in general,
be an interval containing the real number .l. In order to set X to an

interval which does contain .1, one may write

X= "1, .1)$', or X = 9H(.1, .1)$ if the host compiler

-

does not accept quoted Hollerith literals. If the host compiler generates
a sentinel for a Hollerith literal, and if the UNPACK primitive recognizes
that sentinel, the terminal $ may be omitted. Any string that is legal input
for the formatted read (see discussion below and Appendix 1) is also accept-
able to the routine which performs this conversion. Thus, on the UNIVAC
1110, the statement

X= ',1"
would also have the desired effect.

Reading INTERVAL variables: Two options are available in this package:

a free format read and a formatted read.

The free format read will obtain the next data field from the input
stream on the specified unit, convert it, and store the result in the
specified INTERVAL variable. The calling sequence is

CALL INTRDF (UNIT, X)
The basic package will recognize units 5 (standard input) and 0 (reread),
but the user may add other units or change unit designations as desired;
this is discussed in the technical documentation. A data field may be
any legal representation of an interval variable (see Appendix 1); however,
for simplicity, one may be assured that the format (anumber, number), where
number is any legal FORTRAN string representing an integer, fixed point
number, or floating point number, is always valid. Embedded blanks between
matching parentheses are always ignored. Fields may be separated by
blanks (as many as desired), although if intervals are enclosed in parenthe-
ses as indicated above, blanks are unnecessary. Fields may be continued
across card boundaries. The input stream remains uninterrupted so long as
all reading is done by INTRDF and the unit number does not change. Once the
input stream has been interrupted, INTRDF begins a new input stream with

a new record,

The formatted read, as its name implies, reads interval data according
to a specified format. This routine reads a vector of values (which may
be of length 1), The calling sequence is

CALL INTRD(UNIT, FMT, A, N)

Unit is as in the free format read; A is the first location of the vector
into which the data is to be read; and N is the length of the vector.
FMT is an array of length 3; FMT(l) is the number of data items per record,
FMT(2) is the number of characters to be ignored before each data field, and
FMT(3) is the width of each data field. Note that these values are con-
stant for each call to INTRD. A data field may be any legal representation
of an interval variable; parentheses are optional, and embedded blanks are
ﬁermitted. No other information is permitted within a data field.

Computing with INTERVAL variables: Expressions involving INTERVAL

variables are written in standard FORTRAN syntax, just as though INTERVAL
were a standard FORTRAN data type. A list.of the operations and functions
availeble in this package may be found in Appendix 2.

Mixed mode expressions are permitted, but their use is discouraged due
to the high probability of introducing hidden error, For example, the expres-
sion

Y= 0,1 *X
where X and Y are INTERVAL variables, will not yield a correct value of Y;
0.1 will first be converted to REAL by the compiler, and AUGMENT will then
cause that REAL number to be converted to a degenerate interval not contain-
ing .1. Multiplication will then occur using this erroneous interval.

Other operators and functions peculiar to interval arithmetic are
implemented; examples include the intersection of two intervals, the union
of two intervals, derivation of the midpoint and half-length, etc. These

are listed in Appendix 2, Relational operators are also implemented, but

“Qu

———

they take on different meanings in the context of interval arithmetic;
see Appendix 2 for details.

Writing INTERVAL variables: The write routine will convert a vector

(possibly of length 1) of INTERVAL variables to external format and write
it on the specified output unit according to the given format. The
external representation of each interval is guaranteed to contain the
interval, and is the smallest interval represenstable in the given format
which does so. The calling sequence is

CALL INTWR(UNIT, FMT, A, N)
The basic package will recognize units 6(standard printer) and 1 (standard
punch) , but again the user may change designations and/or add units at will,
If an illegal output unit is specified, INTWR will use the standard printer
instead.

FMT is now an integer array of length 4, The first three values are
the same as for INTRD (except that ignored characters in the output record
are filled with blanks); FMT(4) is a carriage control character for use
where appropriate. This character must be either 'O' or ' ', denoting
double spacing or single spacing, respectively. The width of each data
field specified by the format must be at least great enough to permit the
package to convert one significant digit; in the 1110 version, this is 15
characters, assuming a 2-digit exponent. Add 2 characters for each addition-
al exponent digit in the external format, If an illegal format is speci-
fied, the routine will default to a standard format,

A and N are as in the formatted read.

Errors: The package is designed to detect all errors as they occur,
The user may elect any of the available responses for any possible error
(See Appendix 3); however, the default response is to print an error message

and halt the computation except in thoee cases where viable alternatives

-10-

fﬁ‘"

exist, Those cases are few indeed; they comprise arithmetic underflows
(where the offending value is set either to zero or to the properly-
signed number of smallest magnitude, as appropriate) and errors occurring
on output (where the write routine uses standard modes of output rather
than electing to scrub the computation amd lose the output altogether).

In the former case, the computation proceeds without notice to the user;
in the latter case, a message is printed after the output is complete,

The method of changing the default responses to errors is discussed in the

g‘éhnical documentation,
/

’

Producing an object program: Unless a sophisticated job control

language allows for an automatic (from the user's point of view) invocation
of the AUGMENT precompiler and the FORTRAN compiler, the generation of
an object program is a two-step procedure:

1. Use AUGMENT to translate the source program into a FORTRAN program
compatible with the compiler. This can be accomplished with a run stream
of the following type:

invoke AUGMENT

description decks for BPA and INTERVAL (supplied with the package)
*BEGIN

source program

*END

AUGMENT will write the translated program on Unit 20.

2, Compile the output of AUGMENT using the standard FORTRAN compiler
and execute the resulting program in the usual manner. The user must insure
that the BLOCK DATA modules are included when the program is processed

by the linkage editor.

=11=

4. Adaptation of the package:

Adaptation of the package to other hardware is not difficult provided one
has access to the AUGMENT precompiler, The necessary steps are:
1. Decide on data representations for the interval endpoints and
for EXTENDED precision numbers.
2. Code or revise primitives, as necessary.
3. Process the package through the AUGMENT precompiler and compile
the resulting FORTRAN code,
4, Check the package.
S. Tune and recheck the package.
We discuss each of these steps in greater detail.

" pata representations: Normally, the representation for interval endpoints

will be the same as REAL and EXTENDED will be the same as double precision.
These choices will simplify the adaptation of the package; however, for special
purposes such as higher precision interval arithmetic, other choices may be
nade, There are .ovofcl implicit assumptions which will, to a certain extent,
govern the choices of representations:
a. The portion of the package which performs endpoint evaluations
(known as type BPA) will contain explicit routines to perform all
operations, As designed, it is assumed that conversion from BPA to REAL
is exact, although conversion in the other direction need not be. This
is done to facilitate adaptation to two's complement hardware, where the
negative of a real number is not necessarily representable; we assume that
the negative of every BPA number is representable.
b, It is assumed that EXTENDED is bound to a higher precision than
is BPA, Moreover, we assume that every BPA number and every FORTRAN
integer can be represented exactly in EXTENDED format, For the evaluation

of special functions, we assume that a complete supporting package exists

-12-

for tvpe EXTENDED, and that bounds on the accuracy of these routines

are available,

Primitives: There are nineteen primitives which depend on the represen-
tation of BPA and EXTENDED numbers in the host system, Two of these are
BLOCK DATA modules, which contain various representation dependent constants;
eight are written in FORTRAN and depend only on BPA format being the same
as REAL and EXTENDED being the same as DOUBLE PRECISION; three depend on both
data representations and the (nonstandard) FLD function; one contains FORMAT
statements which may be representation dependent; and five are arithmetic
primitives which must necessarily be recoded for any change in data representas
tion, The arithmetic primitives are, in fact, written in assembly language.

In addition, INTRD and INTRDF, while not technically primitives, contain
nonstandard READ statements which recognize the END OF FILE condition., If the
host compiler does not recognize this form of READ statement, those statements
will need to be modified.

Complete documentation of these primitives is given in the technical
manual, It does not seem appropriate to go into greater detail here.

AUGMENT processing: The use of the AUGMENT precompiler preserves both

naturality of expression and flexibility. Most of the INTERVAL package is
written in terms §f the nonstandard types BPA, EXTENDED, and INTERVAL, The
binding to specific data representations is accomplished through the primitives,
and these bindings are extended through the remainder of the package by the

use of AUGMENT, Every effort has been made to write the package so that the
output of the AUGMENT precompiler will be ANSI Standard FORTRAN. There is

no requirement that AUGMENT be available on the target computer; the pre-

processing can just as well be done on any computer, with the resulting

-13-

FORTRAN code being brought to the target system for compilation,

Checking the package: A collection of test programs is provided with

the INTERVAL package. Successful execution of these programs is reasonably
good assurance that the primitives have been implemented properly.

Tuning the package: The price paid for the degree of flexibility

present in the source code for this package is quite likely to be decreased
efficiency in the object code, For example, since the format of BPA
numbers is arbitrary, conversion from REAL to BPA will generate a call on a
subprpgran which is responsible for performing this task (this subprogram
is, of course, a primitive). If BPA numbers are the same as REAL, this will
result in unnecessary overhead; an in-line replacement operation would
perform the same task at considerably less gost, AUGMENT can not be
instructed to make this modification; thus, for greatest efficiency,
it will be necesslry to examine the output of AUGMENT and replace calls
of this type by in-line replacement statements, There are, of course,
many other possibilities, depending on representation; for example, if the
hardware has double precision capability, one could change calls on the
interval replicenent subroutine to in-line replacement statements using the
double precision hardware.

A cortain amount of care must be exercised in tuning the package.
For example, the routines which evaluate BPA relational operators call on
the BPA subtract routine. This should not bé altered unless the hardware
subtract always produces a result of the same sign as the true result, even
in cases of underflow and overflow. If the hardware sets an underflow to
zero, or gives garbage when overflow occurs, then the hardware subtract must
not be used,

Needless to say, the package must be rechecked whenever any changes are

nade,
=14~

5. Conclusion:

In this paper, we have sketched the design and use of a package for
performing ciiculations in interval arithmetic. The package is both
flexible and transportable; adaptation of the package to other systems
can be accomplished by rewriting a maximum of néneteen primitive modules,
most of which are easily adapted to a new host system. Further details of

the package are provided in the technical documentation.

~15-

1.

2,

3.

4.

S.

7.

9.

REFERENCES

ANSI Standard FORTRAN, American National Standards Institute,
New York, 1966.

Crary, F. D. The AUGMENT precompiler I. User information. The
University of Wisconsin - Madison, Mathematics Research Center,
Technical Summary Report # 1469, December, 1974.

. The AUGMENT precompiler II. Technical documen-

tation. The University of Wisconsin - Madison, Mathematics
Research Center, Technical Summary Report # 1470,

Lang, Allan L. and Shriver, Bruce D. The design of a polymorphic
arithwetic unit. Third IEEE - TCCA Symposium ofi Computer
Arithmetic, November, 1975, 48 - 55,

Moore, Ramon E. Interval Analysis. Prentice - Hall, Inc.,
Englewood Cliffs, N. J., 1966

Ris, Frederic N. A unified decimal floating-point architecture
for the support of high-level languages (extended abstract).
SIGNUN Newsletter 11, 3 (October, 1976), 18 - 22,

Wilkipnson, J. H. Rounding errors in algebraic processes. Notes
on Applied Science No, 32, Her Majesty's Stationery Office,
London, 1963.

Yohe, J. M. Roundings in floating-point arithmetic. JIEEE Trans.
Computers C-22 (1973), 577 - 586.

« The INTERVAL Arithmetic package. The

University of Wisconsin - Madison, Mathematics Research Center,

Technical Summary Report (forthcoming).

-16~

APPENDIX 1

STANDARD FORTRAN NUMBER AND
INTERVAL NUMBER REPRESENTATIONS

' DIGIT 1= 0|1|2|3|4|5]|6|7|8]|9
SIGN 1= +|-
INTEGER t1= NULL|<SIGN> | <INTEGER><DIGIT>
RADIX L LS
PIXEDPOINT 11= <INTEGER><RADIX> | <FIXEDPOINT><DIGIT>
EXPSEP 11= E|D
EXPONENT 11= <SIGN> | <EXPSEP> | <EXPSEP><SIGN> | <EXPONENT> <DIGIT>
NUMBER 11= <INTEGER> | <FIXEDPOINT> | <INTEGER> <EXPONENT> |
<FIXEDPOINT><EXPONENT>
; ENDPTSEP L L |
COMMA 1=,
INTERVAL 11= <NUMBER> | (<NUMBER>) | <NUMBER> <ENDPTSEP> <NUMBER>

(<NUMBER> <ENDPTSEP> <NUMBER>) l (<NUMBER> <COMMA> <NUMBER>)

-17-

INTERVAL INPUT RULES

FORMATTED INPUT:
One and only one <INTERVAL> shall appear in any one field.
Embedded blanks are permitted; they will be ignored.
FREE FORMAT INPUT:
Leading blanks are always ignored.
Blanks within matching pairs of parentheses are always ignored.

Commas within matching pairs of parentheses are regarded as endpoint
separators.

A field consists of exactly one <INTERVAL>.

A field is terminated by
l. A visible blank;

2. MAny of the characters °'$', '#', ‘=%,

3. A comma occurring outside of a matching pair of parentheses;

4. Any nonblank character following a matching right paren-
thesis (If such character is not °'$', '#', 's', or ',’',
it will be regarded as the first character of the next
field))

S. A left parenthesis or colon occurring outside of a matching
pair of parentheses. (Such character will be regarded as
the first character of the next field),

If a left parenthesis is encountered, the scan proceeds to the matching
right parenthesis regardless of what characters are encountered,
except that '$', '#', and '=' always terminate the field.

ALL INPUT,

A null field is taken to represent the interval (0, 0).

A field containing <NUMBER> or (<NUMBER>) is taken to represent a
degenerate interval; this number is converted and rounded down
for the left endpoint, and up for the right endpoint.

If a field contains two <NUMBER>s, the first will be converted and

rounded down for the left endpoint, and the second will be con-
verted and rounded up for the right endpoint.

-18-

o9
ax

mnuunuununuan wmna wuwu n

]

(ax

nuuuuununuunan

(¥x
(ax
(ax
(ax

uuunaun

(ax
X
(ux
(ax

wuny

3adAL
ANILOCH

00
on
6
‘agq

ACONUUIkUﬂOy
(uoTazesur) (WX
(uotT3IdoeI3IXd)
(UOY3IIISBUT) (WX

(£35¢
(¥X
X
OiX
(X
(£:84
(ax

(¥x

(ax
(¥x
(ax
(ax
(ax
‘ax
ax
(ux
ax

‘ax
‘ar
‘q3
‘gg

‘ax
‘ax
‘ax
‘ax

Cuvy oI

VX) TTHLNT
VX) LSALNI

(V¥X) dNSINT
‘¥11) TASINI
(¥X) AINILNI
‘va) INILNI

VX) HHLLNT
VX) NYLLNT
vx) LOSINT
fUX) HNSINT
‘VX)NISINT
‘¥X) DOTINT
‘¥X) MIINI

¥X)LNILNI

‘¥X) dXILNT
‘WX) HSOLNI
¥X) SOJLNI
‘¥X) LEDINT
VX) NLVINT
‘¥X) ZLVINY
‘¥X) NSVLINI
‘¥X) SOVINI
‘¥X) SAVINT

WX) XXXLINT
‘¥X) IXXINI
f¥X) IXXINI
‘WX) EXXINT

‘¥X) ATAINI
‘¥X) TAWLNI
‘¥X) ENSINT
VX)aavInt

O3 1a

(WX) HZoT
(¥X) nzoan
(ax ‘vx)zsra
‘ V1) SADLINT (961 Y€1) SOdHOD

(¥x)dns

(VX) INT

(¥X) HNVE
(VX) AvZ
(¥X) A0S
(W) HHIS
(WX)NIS
(¥x)orvor
(VX) 9507
20 (¥X)NT
(VX)INT

(¥X)dxa

(w¥X) HS0D

(¥X) S00

(¥X) z¥a>

(VX) NYLIY

(axX ‘WX)znviv
(¥X) NISV

(¥X) soov

(V¥X) savy

X s»
4 »»
93 se
a9 +»

ax /
X »
nx'
& +

LNIWONY YIA 3JAdXL
NOILVOOANI ANIINCY IINST

X mQ

-]

X X XX E IR R I I x X XXX X XX]

H XXX

dn papunox ! (vx);ul-(vx)dug

dn papunox ‘z/((¥x)3Iul=(v¥¥)<ing)

(| (@x)dns=(wx)dus| | (ax)3u1-(¥X)3uI|)xeH
sjutodpua YJdg OM3 WOXJ TPAISIUT wI0njg
SHOILONNS TVAYILNI TVID3dS

VX TeAIajuY

3o 3juvodpus ubTH

¥X Teaxa3ur 3O jutodpus 3397

¥¥X [eaxa3ur 3o 3juabue3 orroqradip
¥X TeAIajur 3o 3judbuel

¥X TeAaXdajur jo 300x axenbg

¥X TeAxajur jJo aurs >trroqiadiy

¥¥X TPAI23UT JO BUTS

¥X TeAalaljuy 3o QT @seq ay3 o3 hot

¥X Teaxojur jo
¥X Teaxajur
sjuyodpus Iebajur YITA

¥X TeAXo3uy 3o

a aseq ayjy o3 bot
ay3 bhuturejuod
TeAI33UT 3SsaTTews
¥X ¢ @
8uTs0d> dTT0qI3dAH

¥X TeAIDIUY 3O dUTSOD
¥X TeAX33UY JO 300X agnd
¥X [PAI®3UT jJOo 3Juabuel day
gX / ¥X 30 3juabury davy

¥X T@AX®3U} 3JO BuTS day

VX TPAI33UT JO IUTEOY day

aemod TVAMIINT
xamod YIOIINI
zomod QIANTIXT

Iamod vdag

{¥x 3 x t|x|}

03 YPAId3jU} ISTEN
03 Teazejutr asyey
03 [PAIIIUY ISTVY
03 TeAIajuY asyey

8TPAXI3UT OM3 JO 3uatlond
STRAIB3UY OM3 3O 3IdNpoxd

sTeAzZa3UY

om3y jo ®dua1a33Ta

STPAIB3UY OM3 3O ums

.

NOILVNVIIXI/NOILINIIAA

Z XIaN3ddv

y3buoy
Y3LudT 3TeH
a53uelsIq
asodwo)

umwexdng

umwy3juy
a131d
juabuey srvoqradiy
jusbuey,
3002 axenbg
suts otvvoqradiy
auts
uy3TIeboT uoumio)

wyatTIe507 TRINIeN

x9bajuy
TeT3UsUOdx]
8uTs0d> >TToqaediy
auysod
3002 aqn)
juebuey 21y
(ebxe z) uey day
outIs 2y
auTso® 2ay
snyeA IINTOSqQY
TYOILVHWIHIVH
TVAYIAINY O3
Y3IDIALNI O3
Q3IANIIXT 03
vdag o)
NOILVIININOAXA
aptata
Lrdratnm
Ideagqns
PRV
JILIWHI VY

ROI1V¥3d0

-19-

nunununuununawm~x nu u IS I IYS IS I IS RS IS IS |

“uun

fNunaunanunaan

3a4xL
ANTLNOY

(81

(ax

(¥x

(¥x

ax

(¥e

(ax
(ax
(ax
(X
(ax
(ax
(ax

(ax
(ax

(na
M1
‘MH
(43
(49
(¥x%
(ax
‘g1
(¥x
(¥x
-5 4
(ax

‘ax
(ug

‘ax
(t:(: 4
‘ar
(¥a
(ua
(49
(g

‘¥X)aNsInT
VX) ITSINI
‘YX)ITSINT
‘V¥X) LOSINI
VX)) ADSLNT
vX)OASINT
!¥X) SESINI
{(¥X) MOINI
‘ve) ITALNI
(¥X)avalNI

‘¥X) OANINT
‘¥X)4ISINT

‘YX)UXDLNI
‘¥X) IXDINI
{ ¥X) HXDLNI
‘ ¥X) IXDINT
‘¥X) XOINT
‘) YOLNI
‘YI)XIDINI
‘¥1) XHOLNI
‘¥3) X3ADINT
‘¥g) XEDINT
‘¥J) QNAINT
‘VH) OSVINI

‘¥X) NMAINT
‘VX)XISINI
(¥X) NOSINI

‘VX) LOSLINI
¥X) NAdLINT
‘¥X)OAdLNI
‘VUX) TALLINT
‘¥X) OTWINT
‘¥X) GOWINT
‘X) OYWINY

LOM1Iq

RIS S IS IS B IS S IS IS |

8
|
[
Ed
X X

(¥X) LD
(¥X) I2D
(¥X) 320
(¥x)g1d
(W) XID
(¥I)XIO
(¥3) XZO
(va) Xz

-5

5

(buyx3s) xxIo

XX XXX XAXaWw

aX *NOINN°¥X
(¥X)3zrs
(VX) NOS

- I

X IOSINI *¥X
(¥X)nard
(¥X) 7ATd

(¥X) OIN
(¥X) ZdaN
(¥X) ovw

MAaAannan@ax

INIWONY VYIA 3dXL

(ax)dns £ (¥Xx)dns 10 (8X)3IUI ¥ (¥X)3IuIl
(%) Jur > (¥x)3uI
(gX) Jux > (wx)3Jur
(ax)dns < (¥x)dns
(ax)dns < (vx)dng
(ax)dns = (¥x)dns pue {(gXx)Jur = (¥¥)3Iur

X Uy peurejuod yx
(vx)dns > (¥x)3ur
€X 3 vdg

(¥x)dns < (vx)3ur

Tenbo-jou-3es
§5371-38S
tenbe-ssay-388
193eai1b-305
Tenba-xajeaxb-jeg
Tenba-3es

30 39sqns
TeAI®3UT POOD

30 jusweld
TeAIS3UY PRH

TYNOILWYIZ GQKY TVOIDOT

snuta Axeun
z03ex2do juswaserday

{esy ©03 Teara3juyl

x8b33UT 03 TeAIa3UT

(4T Y3IPTM) Y3ITISTTOH payoedun o3 Teaxajur
pepus3xy 03 TEAI3UI

vdq 03 Teaxejul

TeAa3UT O3 TP

TeAxajuy o3 Xabajulr

(61 Y3IPTM) TeAXI3UI O3 YITISTTOH poydedun
TPAI®3UY O3 papualx3y

TeAze3uy 03 vde€

6YP YIAI 3 pepunoq ‘[ewAaXejul O3 papuaixy
Teazsjul 03 \RTIASTTOH PIYded

a §§ o9 Odﬁﬁﬂiu__—g TeAI3UT JISeTTRWS
T/(((¥x)dns)sqV¥ + ((VX)3IUI)SUVY)
VX 30370
10 > (wvx)dns 3¥ T~ (0 < (¥X)3UI 3% 1+
X pUe ¥X 3O UOTIDISIBIUT ITI3I0a3=33S
dn papunox ‘oues
g1 Aq peyjroeds se papunox ‘aures
umop pPIPUNOX ¢ (YX) BTHx (¥X) beis
((¥X) £qQv) Jur
3Isexesu pepunox ‘z/((¥X)3ur+(vx)dns)
((vx)sqv)dns

ajeban
81038
DIANIAS

®xxmuB e
t ettt e
ORI

v
5

ubys
uoy3IdesIeIUT

30A7d
spnayubyW

autodpTH
spnayuben

(PBNUTIUCD) SNOILONNL TYAMILINI TVIDILS

NOILVNVIAX3/NOILINIZAA

NOILVOOANI INIINGM 1INSN

NOIIVI 340

-20-

03 ¥ ST I3333T pPuOd3IsS 3yl

*sbutueaw teroads 103 pasn 8q Aew sSI19333] I3Y3zo (Juaumbie I03 g X0 ¥ ‘IINST

*srqetrea ay3z 30 9dA3 BY3 SOILDOTPUT I83IIT 3ISATI YL STWYN ITAVIMVA

* (sAoqe @38) adA3 p23eSTPUT BY3I JO UOTIOUNI ¥ SI30USP IIIIBT IOY3I0 Aue (IANILNCHANS = S 3SIJAL ANIINCH

NOISIDOMId FTEN0A = A {HLINATIOH ATNOVd = Hd (HITMITIOH "DIOVINN = HN

HINYTITOH = H ITYANIINT = X TV = ¥ (IVDIONOT = T (UIDAILNI = I QAANIIXT = 3 {¥dd = @ ISIJAL VIVG

s JVIINT
s (01 ‘4r ‘¥H ‘VH)MNJININT
s (¥X ‘41 ‘¥X)aIWINI
S (NI ‘WX ‘IWd ‘lINN) ¥MINT
S (MY ‘LINN) JMEINT
S (NI ‘¥X ‘IW3 ‘1INN) MINT
1 (X ‘¥X) INAINT
T (8X ‘V¥X)ITALNI
4 (8X ‘V¥X)TTAINI
1 (8X ‘VX)I9ALNT
o | (8X ‘V¥X)JIOAINT
% (gx ‘vx)B3IAINT
9 (8X ‘¥X)SdSINI
3dxL oM 1a
ANIINON

NOILVOOANI ANIINOM IINSH

*INA® WX
*ITA® WX
*FIA° WX
ax *IoA°* WX
X *J9A° ¥X
@ *03a* ¥X
X *23SYdS *¥X

223

INTWONY VIA

x X

I IS IS I IS

3dXL

$TTIEVL NO SILON

(NOWWOD u¥ sjusumbxe) i
obeyowd TePAIS3UT UT 510118 3ID333Q dexy

ONITANYH ¥ON3

Y3ITXBTTOH pexoed sprdun soedun

ebuex ytedrourad

03 uor3douny B113 jo Jusumbie 3dnpA eonpey
SNOANVTIIDOSIN

Pe33PWIOI ‘I0IOSA TPAIIJUT IITIM 231TIM

weax3s P3P WOl [PAISIUY IX3U pray 3IPWIOF 8313 ‘peoy

Po33IPWIOI ‘I0309A TPAISJUT pTayd peey
INd1N0/INANT

gX 3298I33UT 30U GHOP ¥X Tenbe-jou-anyep

(aX)3ur > (v¥)dng SS0T-anTeA

(aX)3ur > (¥¥)dns tenbe-ssar-enres

(ax)dns < (v¥) Jur Ie3eaxb-snyep

(ax)dns < (v¥)3ur °be-za3esab-anyes

(axX)dns = (EX)JUI = (vX)dns = (¥x)3ur tenba-anyep

X SUYe3U0d WX 3esxedns

(PONUTIUOD) TUNOILVI ANV TNOIOOT

NOILYNVYIdX3/NOILINIJIIA NOIIV¥3IdO

=21«

APPENDIX 3

FAULT ACTION
NUMBER MEANING CODE
0 No fault 0
1 left endpoint - no fault Right endpoint - overflow 4*
2 no fault infinity 3
3 no fault underflow 0
4 overflow no fault 4*
S overflow overflow 4*
6 overflow infinity 3
7 overflow underflow 4*
8 infinity no fault 3
9 infinity overflow 3
10 infinity infinity 3
11 infinity underflow 3
12 underflow no fault 0
13 underflow overflow 4*
14 undexflow infinity 3
15 underflow undexrflow 0
16 Division by zero 3
17 Zero raised to the zero power 1
18 Square root of a negative number 3
19 Logarithm of a nonpositive number 3
20 Underflow during computation of a BPA result 0
21 Overflow during computation of a BPA result 3
22 Intersection of disjoint intervals 3
23 Arc cosine or arc sine argument out of range 3
24 Inverted interval 4
25 Illegal input character 4
26 Illegal input format specification 4
27 Illegal output format specification 1
28 Input string too long 4
29 Illegal or unspecified input unit 4
30 End of file on input unit 1
31 Illegal or unspecified output unit 1l
32 Conversion array overflow during base conversion 4t
33 Unrecognized error 4

* Denotes that the fault is logically impossible
+ This action should not be changed, since any other action could result
in a recursive call on INTRAP from INTCXH.

In the event that a fault occurs, the corresponding action code governs:
the response of the INTRAP routine. The action codes, and their responses,
are:

0 Return tb the calling program without taking any action

1 Print error message and return to the calling program

2 Print error message, trace call sequence, and return

3 Print error message, trace call sequence, step error
counter in Executive program, and return

4 Print error message, trace call sequence, and halt

computation

=22~

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEPO%EDCOl;LgmgNFORM
_" ?.—R_EPORT NUMBER % 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
'/'N RC-TSKR-1731 (=7 e
4. TITLE (and Subtitle) N ! l"' / ! S, TYPE QF.RERQR] & PERIOD COVERED
A R B S T e “ * | gummary Repert, - no specific
il ALy
A SOFTWARE FOR _"INTERVAL jARITHMETIC:/] —miﬁq*peﬁod
A REASONABLY PORTABLE PACKAGE 4 6. PERFORMING ORG. REPORT NUMBER"’
/ > B Aﬂu‘mon(.) : » — 8. CONTRACT OR GRANT NUMBER(e)
D, M.{Yohe | /¢ DAAG29-75-C-0924 |
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMEN'T. PROJECT, TASK
Mathematics Research Center, University of EEOIED ST SN
610 Walnut Street Wisconsin 8 (Sonputer Science)
Madison, Wisconsin 53706
1. CONTROLLMG OFFICE NAME AND ADDRESS 12. \@_EPORT DATE o
U. S. Army Research Office / Vp———
P.O. Box 12211 3. NUMBER OF PAGES
Research Triangle Park, North Carolina 27709 22
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 1S. SECURITY CLASS. (of thie report)
B2 e
3218055 | UNCLASSIFIED
ey /)’ ‘; 1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetrect entered in Block 20, if different from Report)

18. SUPPLEMEN" ARY NQTES

19. XEY WORDS (Continue on reveree side if necessary and Identify by block number)

Interval Arithmetic Program Package

Portable Software

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

We discuss the design and capabilities of a package of FORTRAN subroutines
for performing interval arithmetic calculations. Apart from a relatively small
number of primitives and constants, the package is directly transferrable to
most large scale computers, and has been successfully implemented on IBM, CDC,
and Honeywell equipment in addition to the UNIVAC 1110.

This package has been designed so as to be compatible with the AUGMENT pre-
compiler, and includes interval analogs of appropriate standard FORTRAN opera-
tions and functions, as well as operations and functions peculiar to interval
arithmetic. The result is that the user who has access to AUGMENT may write

programs using interval arithmetic just as though FORTRAN recognized INTERVAL as

DD , 5%, 1473 eoimion oF 1 NOV 68 1S OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

B0 e .

